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Abstract. A system which performs a complex combination of behaviours has two 
superficially independent architectures. One is the functional architecture, which 
separates the behavioural features of the system into feature modules made up of 
groups of similar behaviours, and defines the interactions between features. The 
other is the system architecture (alternatively called the physical or information 
process architecture) which separates the physical information handling resources 
of the system into modules that perform different types of information processes, 
each module optimized to perform a different type of process. Any one feature 
module will employ information processes performed by many or all resource 
modules. Many different functional architectures are possible, but the need to limit 
the resources supporting large numbers of different behaviours tends to constrain 
the form of the system architecture. In the limiting case as the ratio of the number 
of behaviours learned to the available resources becomes very large, the system 
architecture is constrained into a very specific form. In the case of a complex 
learning system this form is called the recommendation architecture. Because there 
are natural selection advantages for species that require fewer neural resources to 
learn a given set of behaviours, there is a tendency for the recommendation 
architecture form to appear in biological brains including human, mammal and 
avian brains. A system designed to perform a complex combination of behaviours 
will be much more effective if designed within this form.. 

1   Introduction 

In this paper, a complex system will be defined as one which can perform a very 
large number of different purposeful behaviours in a way that is appropriate for a 
complex environment. Purposeful means that it is possible to identify system objectives 
which motivate behaviour selection. Such systems could also be called complex 
functional systems, but in this paper the simpler term will be used. Purely physical 
complex systems such as the weather are not purposeful as defined and are therefore 
not included. The behaviours of complex electronic systems like flight control 
computers or telecommunications network managers are specified in advance under 
external intellectual control. A complex learning system must learn a large combination 
of behaviours appropriate to achieve objectives in a very complex environment. 

The behaviours performed by a complex electronic system are typically organized 
into different types of functions, called features or applications. Each function is a 
collection of similar or closely related behaviours. The definition of the different 
functions and the interactions between them is called the functional architecture, and 
can be very different for different systems. For example, a personal computer has 
separate applications for word processing, web access etc. with specific, limited ways 
in which they can exchange information. However, it is striking that any electronic 
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system that performs a complex combination of behaviours always has the same 
physical (or information process) architecture at the highest level. This physical 
architecture separates memory and processing subsystems, with a common bus linking 
these subsystems together and with subsystems receiving inputs from the environment 
and generating outputs driving behaviours. All applications make use of the same 
memory and processing resources, and, conversely, any one memory or processing 
resource will contribute to many or all different applications. 

Mammal brains of different species all have objectives to survive and reproduce, 
but are able to learn to perform very different combinations of behaviours, depending 
on the environmental niche occupied. However, all mammal brains have a very similar 
physical architecture at the highest level, with cortex, hippocampus, basal ganglia, 
thalamus, amygdala and cerebellum. Close examination of the avian brain reveals a 
very similar physical architecture with the same major subsystems [1]. In the case of 
the human brain, one “feature” like episodic memory uses many different physical 
resources, and another feature like imagination uses many of the same resources [2]. 

Both designed and learning systems must obtain information from their 
environment, and use this information to determine an appropriate behaviour at each 
point in time, selecting within a wide range of options. Such systems must therefore 
detect conditions within their input information, and associate different behaviours with 
different combinations of conditions. In systems that are designed, both conditions and 
associations between conditions and behaviours are specified by the designer. In 
systems that learn, most of the conditions and the associations between these conditions 
and appropriate behaviours must be defined heuristically on the basis of experience. 

2 Practical constraints on complex electronic systems 

Any complex system requires information handling resources in order to perform 
its functions. In the case of an electronic system these include the transistors and other 
components that constitute memory and processing subsystems. A system architecture 
that can perform a given set of functions with fewer resources will have an advantage 
over an architecture that requires more resources, although other considerations will 
interact with this resource constraint. 

For an electronic system, these other practical considerations include 
modifiability, repairability, constructability and synchronicity. Modifiability means that 
it must be possible to add or change features without interfering with the operation of 
other features. Constructability means that it must be possible to build many copies of 
the system from blueprints by a process that minimizes the risk of errors and is 
therefore not too complex. Repairability means that it must be possible to diagnose and 
correct construction errors and later component failures or damage. Synchronicity 
means that it must be possible to handle a constant sequence of inputs from a 
continuously changing environment without confusing information derived from the 
environment at different times. 

These different considerations are often in conflict. For example, if every feature 
had completely separate information handling resources, one feature could always be 
modified with no effect on other features. However, this would have a very high cost in 
resources. If information derived from the environment at different times was 
processed by different resources, synchronicity would be guaranteed at a very high cost 
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in resources. The need to find an adequate compromise between conflicting practical 
considerations places strong constraints on the physical architecture [3]. 

2.1   Condition Detection and Modules 

Any one condition detected within environmental inputs will be a list of relevant 
inputs and a specified state for each input. The condition occurs if each relevant input 
(or a high proportion) is in the specified state. In practice a condition may be a very 
complex combination of system inputs and states. Conditions must therefore be 
specified (by the system designer) and the system inputs at each point in time must be 
tested for the presence of each condition by comparison between the inputs and the 
condition specification. Both the specification of a condition and the testing for the 
presence of a condition will require information handling resources. A condition can be 
viewed as a group of smaller conditions (or subconditions). Two conditions are similar 
if some of their subconditions are the same. 

Resource requirements can be considerably reduced if similar conditions are 
collected into modules, within which the resources to specify and detect any overlaps 
(or identical subconditions) are shared. This resource advantage drives a hierarchy of 
modules, with the most detailed modules detecting groups of very similar conditions, 
the similarity making it possible to share resources within a module. Intermediate 
modules are made up of the resources of a group of detailed modules, and detect a 
range of conditions with somewhat less similarity. Higher level modules are made up 
of groups of intermediate modules with lower similarity but still enough to achieve 
resource economies. Similarity between submodules of a higher module means that the 
submodules require some of the same subconditions. Sharing means that there is an 
information exchange between the modules, with each shared subcondition being 
detected by one module and detections communicated to other modules. 

This type of modular hierarchy has considerable resource advantages, but creates 
problems with modifiability. Any one module will be required to support many 
different features. Change to a feature will often require changes to the condition 
definitions used by the feature, but such changes could have undesirable side effects on 
other features using the same condition. Furthermore, the undesirable effects of a 
change can propagate to other modules via information exchange. Modifiability 
therefore requires minimization of information exchange, and the modular hierarchy 
must be a compromise between these conflicting requirements. 

One further constraint on a modular hierarchy is constructability. If every module 
were completely different, then the specification of the construction process would be 
very complex and the probability of errors correspondingly high. However, even on 
one level modules must be different in order to detect different conditions. Hence the 
compromise with constructability will result in modules on one level that are generally 
similar but differ in detail.  

2.2 Handling of sequences of input states 

Inputs to a complex system from the environment are continuous, and conditions 
must be detected in these inputs. Some conditions will be made up of input states 
which must all be present at the same time, others of input states which occur in a 

L.A. Coward and T.O. Gedeon / Architectures of Complex Learning Systems 81

Biologically Inspired Cognitive Architectures 2011 : Proceedings of the Second Annual Meeting of the BICA Society, edited by A.V.
         Samsonovich, and K.R. Jóhannsdóttir, IOS Press, Incorporated, 2011. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/anu/detail.action?docID=836211.
Created from anu on 2021-01-26 20:47:41.

C
op

yr
ig

ht
 ©

 2
01

1.
 IO

S
 P

re
ss

, I
nc

or
po

ra
te

d.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



defined fashion over time. Hence the temporal relationships between condition 
detections must be recorded in some way. The only alternative would be to have 
multiple duplicates of resources to specify and detect conditions at different points in 
time. This would place impractical demands on resources. 

The most precise practical way to support such recording is to use the same 
condition specification and detection resources, but record detections in a separate 
memory along with tags indicating detection time. Because all conditions are exactly 
specified and precisely detected, it is possible for condition detections to have 
unambiguous behavioural meanings. In other words, they can be interpreted as 
commands. There is therefore a major separation in such an architecture between a 
subsystem which records the occurrence of conditions (a memory) and a subsystem 
which executes commands (a processor). In other words, the combination of practical 
considerations results in the ubiquitous von Neumann architecture. 

2.3 Practical constraints on a complex learning system 

The information available to a complex learning system is made up of inputs from 
the environment and inputs from within the system itself. The system must detect 
conditions within its inputs which are effective for discriminating between 
circumstances in which different behaviours are appropriate. Conditions detected 
within internal inputs will be important for guiding a special class of behaviours, called 
reward behaviours. Such conditions discriminate between satisfactory and 
unsatisfactory internal situations, and can be used to reward or punish recent 
behaviours, which have probably played some role in reaching the current situation. 
Reward behaviours increase or decrease the probability that behaviours similar to those 
recently performed will be performed in similar circumstances in the future. Given that 
conditions within the environment must largely be defined heuristically, reward 
behaviours are critical for associating such conditions with appropriate behaviours. 

A complex learning system is also subject to the same practical constraints: 
resource limits, modifiability, constructability, repairability and synchronicity. 
Modifiability in this context means the ability to learn without undesirable side effects 
on past learning. One effect will be organization of condition detection into a modular 
hierarchy as discussed earlier for complex electronic systems. A module on any level 
has a receptive field, defined by the group of conditions it contains. This receptive field 
is detected if a high proportion of these conditions is detected. However, the 
requirement to heuristically define the conditions which will be detected and also to 
define the associations between conditions and behaviours results in some qualitatively 
different architectural constraints from complex electronic systems designed under 
external intellectual control. Enough different conditions must be defined to permit 
discrimination between circumstances in which different behaviours are appropriate. 
The problem is the source of guidance to making changes to conditions. Consequence 
feedback following a behaviour is a possible source, but because any one condition will 
support many different behaviours, changes to the definition of a condition based on 
consequence feedback following one behaviour will have unpredictable effects on all 
the other behaviours dependent on the condition. As a result, consequence feedback 
cannot be used directly to guide changes to conditions or receptive fields. Modules 
cannot therefore be evolved to correspond exactly with the circumstances in which one 
behaviour is always appropriate. In contrast with the von Neumann architecture, 
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condition detections cannot correspond with instructions, only with recommendations 
in favour of a range of different behaviours. 

Recommendations must be interpreted into a behaviour that is actually 
implemented, and the weights of such recommendations must be adjusted by 
consequence feedback. Because such consequence feedback cannot be applied to 
condition definitions, there must be a separate subsystem which receives condition 
detections, interprets such detections as recommendations, determines the strongest 
recommendation across all current condition detections, implements that behaviour, 
and later adjusts recommendation strengths on the basis of consequence feedback. 

As the ratio of the number of behaviours to be learned to the available resources 
increases, a complex learning system will therefore tend to be constrained into an 
architecture with two major subsystems. One subsystem (called clustering) defines and 
detects conditions within the information available to the system, the other subsystem 
(called competition) interprets condition detections as behavioural recommendations. 
This architecture is called the recommendation architecture, and is analogous with but 
qualitatively different from the memory, processing separation in complex electronic 
systems designed under external intellectual control. 

There are four types of behaviour requiring special handling. These are condition 
change behaviours, recommendation weight change behaviours, general behaviour type 
recommendation selection, and behaviour sequence management. 

Changes to modules always risk undesirable side effects on behaviours influenced 
by the changed conditions, and the behaviours of changing the conditions that define a 
module must therefore be tightly managed. This management requires detection of 
conditions able to discriminate between circumstances in which module changes are 
appropriate and inappropriate, and interpretation of such condition detections as 
recommendations in favour of changes to specific modules. The risk of undesirable 
side effects means that in general, changes to a module can only be by addition of a 
few extra conditions that are similar to those already detected by the module. The 
receptive field of the module is expanded slightly, but will continue to be detected in 
all the circumstances in which it was previously detected. Such receptive field 
expansions must only occur if the range of recommendations otherwise available is too 
low to achieve a high integrity behaviour selection. In other words, if the total number 
of receptive field detections is less than some minimum, receptive field expansions 
must occur to bring the number up to the minimum. A resource management subsystem 
is therefore required which detects receptive fields that are appropriate to be interpreted 
as recommendations in favour of expansions of other receptive fields.  The resource 
management subsystem will therefore have the same clustering/competition separation. 

Changes to recommendation weights in competition are also behaviours which 
must be tightly managed. These reward type behaviours will therefore also require a 
clustering/competition separation. Similarly, it may sometimes be appropriate to bias 
behaviour selection in favour of different general types of behaviour. The 
circumstances in which such biases are appropriate must be discriminated by receptive 
fields in clustering and implemented by interpretation of receptive field detections in 
competition. Finally, there may be sequences of actions which are often required to be 
implemented in the same order. Higher speed and accuracy can be achieved by 
recording such sequences in a separate subsystem, and implementing them in response 
to an initial trigger rather than by receptive field detection and interpretation after each 
individual action. 

The architectural form which results from these considerations is illustrated in 
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figure 1. As the ratio of behaviours which must be learned to available information 
handling resources increases, a complex learning system will tend to be constrained 
more tightly into this form. In an analogous fashion, systems that are designed to 
perform a complex combination of behaviours tend to be constrained into the von 
Neumann architectural form. 

 
Figure. 1. The recommendation architecture. This architecture is the limit towards which a learning system 
will tend to be constrained as the ratio of behaviour to available information handling resources increases. 
Different subsystems perform different types of information processes. Any one behaviour will require many 
different types of information process performed by many different subsystems. Conversely, any one 
subsystem will perform information processes in support of many different behaviours.  Clustering defines 
and detects conditions within the information available to the system , including both external environmental 
and internal state information. Conditions are organized into groups (called receptive fields), and if a high 
proportion of the conditions are present, the detection of the receptive field is signalled to competition. 
Withing competition, each receptive field detection is interpreted as a range of behavioural recommendations, 
each with an individual weight. Behaviour selection determines and implements the most strongly 
recommended behaviour . Reward management determines the total recommendation weight in favour of 
reward behaviours. If implemented, reward behaviours adjust the weights of recently implemented 
behaviours. Many behaviours are implemented by releasing receptive field detections from one module of 
clustering to another, or outside clustering to drive externally directed behaviours. Information flow 
management manages these information releases in detail, with guidance from the behaviour selection 
component. Note that information flow management gates the release of information but does not change the 
content. The resource management module uses special purpose receptive fields to determine when and 
where changes will be made to receptive fields throughout clustering. Behaviour type probability 
management detects special purpose receptive fields that recommend favouring different general types of 
behaviour are currently appropriate.  Selection of the most favoured type is implemented by reducing the 
threshold for detection of receptive fields elsewhere in clustering that strongly recommend behaviours of that 
type. Many often utilized behaviours are sequences of actions.. Such sequences could be implemented by 
receptive field detection and behaviour selection prior to each action, but more rapid and accurate execution 
can be achieved by recording the sequence in the behaviour sequence management component, which 
executes the sequence on the basis of initial receptive field detections. 

There is one further important architectural consideration imposed by practical 
considerations. Conditions must be detected within environmental inputs at a single 
point in time (e.g. within a single visual object, guiding appropriate behaviour in 
response to the object). More complex conditions must be detected that incorporate 
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conditions detected at multiple points in time (e.g. within a group of objects, guiding 
appropriate behaviour in response to the group). To detect the more complex conditions, 
condition detections derived from information at different points in time must be 
simultaneously active, but without confusion of the information from different points in 
time. Avoidance of confusion requires either spatial or temporal separation. Spatial 
separation would require duplicate resources for condition detection. Temporal 
separation can be achieved by separating condition detections within different inputs 
into different time slots in the same physical condition detection resources. This 
solution is more resource effective and appears to be used in the human brain [4]. 

The cognitive deficits that result from damage to different anatomical structures in 
the brain [5] indicate that the human and other mammal brains have been constrained 
by natural selection pressures into the recommendation architecture form. 

3 Indirect receptive field activation and cognitive processing 

A module is activated by detection of its receptive field in current environmental 
inputs. Such activations make the behavioural recommendations corresponding with 
the detections available to guide immediate behaviour. However, complex learning 
requires that behavioural guidance has access to much more information than just these 
current inputs. If a receptive field of a module is currently not detected, but has often 
been detected in the past at the same time as many of the currently active receptive 
field modules, then that inactive module may have relevant recommendation strengths 
to contribute to current behaviour. Hence there can be behavioural value in the 
capability to indirectly activate modules on the basis of past temporally correlated 
activity. Different types of temporally correlated activity could be relevant: recent or 
frequent past simultaneous activity, or past simultaneous receptive field changes. In 
each of these types, past activity of the inactive module could be simultaneous with, 
shortly before or shortly after the past activity of the active modules. 

If uncontrolled, such indirect activations would result in chaotic patterns of 
module activation. Indirect activations must therefore be behaviours that are 
recommended by module activations and only implemented if there is sufficient total 
recommendation strength into competition. Indirectly activated modules may 
themselves have recommendation strengths in favour of indirectly activating yet other 
modules, resulting in a sequence of indirectly activated module populations with a 
considerable degree of independence from current inputs from the external 
environment. It can be demonstrated that the three types indirect activation (on the 
basis of recent, frequent past, and past change activity) can support, respectively, 
priming, semantic and episodic memory in human beings [5]. More complex cognitive 
processes can be supported by ordered sequences of activations, including both direct 
and indirect activations [6;7]. 

4 Simulations of the recommendation architecture 

The recommendation architecture can be simulated on a von Neumann machine 
[3]. Such simulations have demonstrated that the information processes of the 
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recommendation architecture can organize experience heuristically into receptive fields 
able to discriminate between situations with behaviourally different implications [3;8]. 
Simple reward feedback applied to a separate competition subsystem receiving the 
receptive field detections results in learning of new behaviours with minimal 
interference with past behavioural learning [9]. Receptive field detections within 
different input states can be separated in different time slots [4]. Indirect activation of 
receptive fields can support more complex cognitive processing [3]. 

Organization of experience into arrays of receptive fields has some general 
resemblances with neural network approaches like Kohonen maps [10] and adaptive 
resonance [11]. However, as discussed more fully in Coward [3;5] there are major 
differences from these approaches. In particular, the concept of receptive fields that in 
most circumstances only expand, with detailed management of when such expansions 
can occur, is qualitatively different from alternative network algorithms. The approach 
also avoids the problem of catastrophic interference between new and prior learning 
found in many neural network algorithms [12]. 

5 Conclusions 

If a system is to be designed that can learn to perform many different behaviours, 
it is important to focus on the information processes that are supported and how those 
processes are organized into a system architecture, not just on the functional 
architecture. 

If many different conditions must be detectable in order to be able to discriminate 
between circumstances in which different behaviours are appropriate, and if most of 
those conditions must be defined heuristically, then the information processes required 
will be those of the recommendation architecture, and it will be necessary to organize 
system resources as in figure 1 to optimize the performance of those processes. A 
system that addresses a limited domain, with a significant amount of preprogrammed 
knowledge, will not experience these architectural constraints to the same degree. 

The individual information processes are present in the brain, and have 
individually been tested by electronic simulation. The next step is development of a 
system which must learn a complex environment with minimal guidance, and perform 
a complex combination of appropriate behaviours in response to that environment.  
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